
© 2014 Carnegie Mellon University

Model-Driven Verifying

Compilation of Synchronous

Distributed Applications

Sagar Chaki, James Edmondson
October 1, 2014

MODELS’14, Valencia, Spain

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 OCT 2014

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Model-Driven Verifying Compilation of Synchronous Distributed
Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Sagar Chaki James Edmondson

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

24

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under

Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software

Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,

BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM

PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted

below.

This material may be reproduced in its entirety, without modification, and freely distributed in written

or electronic form without requesting formal permission. Permission is required for any other use.

Requests for permission should be directed to the Software Engineering Institute at

permission@sei.cmu.edu.

DM-0001691

3

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Outline

• Motivation

• Approach

• Sequentialization : SEQSEM & SEQDBL

• Examples

• Experimental Results

• Synchronizer Protocol : 2BSYNC

• Tool Overview & Demo

• Future Work

4

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Motivation

Distributed algorithms have always been important

• File Systems, Resource Allocation, Internet, …

Increasingly becoming safety-critical

• Robotic, transportation, energy, medical

Prove correctness of distributed algorithm
implementations

• Pseudo-code is verified manually (semantic gap)

• Implementations are heavily tested (low coverage)

5

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Approach : Verification + Code Generation

Distributed

Application

Safety

Specification

Program in Domain Specific Language

Verification

Code

Generation

Binary

Debug Application,

Refine Specification
Success

Failure

Run on Physical

Device

Run within

simulator

The Verifying Compiler:

A Grand Challenge for

computing research

Tony Hoare

6

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Verification

Distributed

Application

Safety

Specification

Sequentialization

Single-Threaded

C Program

Software Model Checking

(CBMC, BLAST etc.)

Failure Success

Program in Domain Specific Language

Automatic verification technique for finite
state concurrent systems.

• Developed independently by Clarke and
Emerson and by Queille and Sifakis in
early 1980’s.

• ACM Turing Award 2007

Specifications are written in propositional
temporal logic. (Pnueli 77)

• Computation Tree Logic (CTL), Linear
Temporal Logic (LTL), …

Verification procedure is an intelligent
exhaustive search of the state space of
the design

Model Checking

Assume

Synchronous

Model of

Computation

7

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Code Generation

Distributed

Application

Safety

Specification

Add synchronizer protocol

C++/MADARA Program

Compile

(g++,clang,MSVC, etc.)

Program in Domain Specific Language
A database of facts: 𝐷𝐵 = 𝑉𝑎𝑟 ↦
𝑉𝑎𝑙𝑢𝑒

Node 𝑖 has a local copy: 𝐷𝐵𝑖

• update 𝐷𝐵𝑖 arbitrarily

• publish new variable mappings

• Immediate or delayed

• Multiple variable mappings

transmitted atomically

Implicit “receive” thread on each node

• Receives and processes variable

updates from other nodes

• Updates ordered via Lamport

clocks

Portable to different OSes (Windows,

Linux, Android etc.) and networking

technology (TCP/IP, UDP, DDS etc.)
Binary

MADARA Middleware

Guarantee

Synchronous

Model of

Computation

8

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Synchronous Distributed Application (SDA)

Shared Variables:𝑮𝑽 = 𝑮𝑽 𝟎 , 𝑮𝑽[𝟏] Node 𝟎 = 𝒇𝟎() Node 𝟏 = 𝒇𝟏()

𝑮𝑽𝟎

𝑮𝑽𝟏[𝟎] = 𝒇𝟎 𝑮𝑽𝟎 𝑮𝑽𝟏 𝟏 = 𝒇𝟏(𝑮𝑽𝟎)

𝑮𝑽𝟏

𝑹𝒐𝒖𝒏𝒅 𝟏

𝑮𝑽𝟐[𝟎] = 𝒇𝟎 𝑮𝑽𝟏 𝑮𝑽𝟐 𝟏 = 𝒇𝟏(𝑮𝑽𝟏)

𝑮𝑽𝟐

𝑹𝒐𝒖𝒏𝒅 𝟐

𝑮𝑽𝒊[𝟎] = 𝒇𝟎 𝑮𝑽𝒊−𝟏 𝑮𝑽𝒊 𝟏 = 𝒇𝟏(𝑮𝑽𝒊−𝟏)

𝑮𝑽𝒊

𝑹𝒐𝒖𝒏𝒅 𝒊

𝑮𝑽𝒊−𝟏

9

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

SDA Verification

Program with 𝑛 nodes : 𝑃(𝑛)
• Each node has a distinct 𝑖𝑑 ∈ 1, 𝑛

• Array 𝐺𝑉 has 𝑛 elements, 𝐺𝑉[𝑖] writable only by node with id 𝑖
• Each element of 𝐺𝑉 is drawn from a finite domain

In each round, node with id 𝑖𝑑 executes function 𝜌 whose body is a statement

 𝑠𝑡𝑚𝑡 ≔ 𝑠𝑘𝑖𝑝 | 𝑙𝑣𝑎𝑙 = 𝑒𝑥𝑝 (𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡)

 | 𝐼𝑇𝐸 𝑒𝑥𝑝, 𝑠𝑡𝑚𝑡, 𝑠𝑡𝑚𝑡 (𝑖𝑓, 𝑡ℎ𝑒𝑛, 𝑒𝑙𝑠𝑒)

 | 𝐴𝐿𝐿 𝐼𝑉, 𝑠𝑡𝑚𝑡 (𝑖𝑡𝑒𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 ∶ 𝑢𝑠𝑒 𝑡𝑜 𝑐ℎ𝑒𝑐𝑘 𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒)

 | 𝑠𝑡𝑚𝑡+ (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠)

 𝑙𝑣𝑎𝑙 ≔ 𝐺𝑉 𝑖𝑑 𝑤 (𝑙𝑣𝑎𝑙𝑢𝑒𝑠)

 𝑒𝑥𝑝 ≔ ⊤ ⊥ 𝑙𝑣𝑎𝑙 𝐺𝑉 𝑖𝑣 𝑤 𝑖𝑑 𝐼𝑉 ⋄ (𝑒𝑥𝑝+) (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠)

Initial states and “ERROR” states of the program are define
• State ≡ value assigned to all variables

Verification ≡ decide if there is an execution of the program that starts in an initial
state and ends in an ERROR state

10

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Semantic Sequentialization: SEQSEM

Shared Variables:𝑮𝑽 = 𝑮𝑽 𝟎 , 𝑮𝑽[𝟏] Node 𝟎 = 𝒇𝟎() Node 𝟏 = 𝒇𝟏()

𝑮𝑽𝟎

𝑮𝑽𝟎 𝟎 =

𝒇𝟎 𝑮𝑽𝟎

𝑮𝑽𝟏 𝟏 =

𝒇𝟏(𝑮𝑽𝟏)

𝑮𝑽𝟎
𝑹𝒐𝒖𝒏𝒅 𝟏

𝑮𝑽𝟏

𝑮𝑽𝟏

𝑮𝑽𝟎 𝒊 =
𝑮𝑽𝒊 𝒊 ,
𝒊 ≠ 𝟎

𝑮𝑽𝟏 𝒊 =
𝑮𝑽𝒊 𝒊 ,
𝒊 ≠ 𝟏

𝑨𝒔𝒔𝒖𝒎𝒆 𝒏 𝒏𝒐𝒅𝒆𝒔

𝑼𝒔𝒆 𝒏 𝒄𝒐𝒑𝒊𝒆𝒔 𝒐𝒇 𝑮𝑽

𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 𝒉𝒂𝒗𝒆 𝒊𝒏𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒕𝒄𝒆 ⇒ 𝒓𝒆𝒐𝒓𝒅𝒆𝒓𝒆𝒅 𝒔𝒆𝒒𝒖𝒆𝒏𝒕𝒊𝒂𝒍𝒍𝒚.

𝑹𝒐𝒖𝒏𝒅𝒔 𝒂𝒓𝒆 𝒓𝒆𝒑𝒆𝒂𝒕𝒆𝒅 𝒊𝒏 𝒂 𝒍𝒐𝒐𝒑.

𝑶 𝒏𝟐
𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 ⇒

𝑺𝒕𝒂𝒕𝒆 𝑬𝒙𝒑𝒍𝒐𝒔𝒊𝒐𝒏

𝑮𝑽𝒏−𝟏 𝒏 − 𝟏 =

𝒇𝒏−𝟏(𝑮𝑽𝒏−𝟏)

𝑮𝑽𝒏−𝟏

𝑮𝑽𝒏−𝟏

𝑮𝑽𝒏−𝟏 𝒊 =
𝑮𝑽𝒊 𝒊 ,

𝒊 ≠ 𝒏 − 𝟏

11

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Double Buffering Sequentialization: SEQDBL

Shared Variables:𝑮𝑽 = 𝑮𝑽 𝟎 , 𝑮𝑽[𝟏] Node 𝟎 = 𝒇𝟎() Node 𝟏 = 𝒇𝟏()

𝑮𝑽𝟎

𝑮𝑽𝟏 𝟎 =

𝒇𝟎 𝑮𝑽𝟎

𝑮𝑽𝟏 𝟏 =

𝒇𝟏(𝑮𝑽𝟎)
𝑹𝒐𝒖𝒏𝒅 𝟏

𝑼𝒔𝒆 𝟐 𝒄𝒐𝒑𝒊𝒆𝒔 𝒐𝒇 𝑮𝑽

𝑼𝒔𝒆 𝒆𝒂𝒄𝒉 𝒄𝒐𝒑𝒚 𝒂𝒔 𝒊𝒏𝒑𝒖𝒕

𝒊𝒏 𝒂𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒆 𝒓𝒐𝒖𝒏𝒅𝒔

𝑶 𝒏
𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔

𝑮𝑽𝟏 𝒏 − 𝟏 =

𝒇𝒏−𝟏(𝑮𝑽𝟎)

𝑮𝑽𝟏

𝑮𝑽𝟎 𝟎 =

𝒇𝟎 𝑮𝑽𝟏

𝑮𝑽𝟎 𝟏 =

𝒇𝟏(𝑮𝑽𝟏)

𝑮𝑽𝟎 𝒏 − 𝟏 =

𝒇𝒏−𝟏(𝑮𝑽𝟏)

𝑮𝑽𝟎

𝑹𝒐𝒖𝒏𝒅 𝟐

12

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Example: 2D Synchronous Collision Avoidance

(0,0)

(3,3)

(3,0)

(0,3)

Reserve Reserve Reserve

X

Y

13

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Example: 2D Synchronous Collision Avoidance

(0,0)

(3,3)

(3,0)

(0,3)

Reserve

Reserve

Reserve

X

Y

14

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Example: 2D Synchronous Collision Avoidance

(0,0)

(3,3)

(3,0)

(0,3)

Potential

Collision

Reservation

Contention

Resolved based

on Node ID. No

collision

possible if no

over-booking.

X

Y

15

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

2D Collision Avoidance Protocol

NEXT

REQUEST
If time to move to

next coordinate

WAITING

If no other node is

locking the next

coordinate

MOVE

If no other node

“with higher id” is

trying to lock the

next coordinate

Reached the next

coordinate

Moving to the

next coordinate
𝑶𝒕𝒉𝒆𝒓 𝑬𝒙𝒂𝒎𝒑𝒍𝒆𝒔

3D Collision Avoidance

Mutual Exclusion

16

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Results: 3D Collision Avoidance

𝑻𝑺, 𝑻𝑫 = 𝒎𝒐𝒅𝒆𝒍 𝒄𝒉𝒆𝒄𝒌𝒊𝒏𝒈 𝒕𝒊𝒎𝒆 𝒘𝒊𝒕𝒉 𝑺𝑬𝑸𝑺𝑬𝑴, 𝑺𝑬𝑸𝑫𝑩𝑳

𝝁, 𝝈 = 𝑨𝒗𝒈, 𝑺𝒕𝑫𝒆𝒗 𝒐𝒇
𝑻𝑺

𝑻𝑫

𝒏 = #𝒐𝒇 𝒏𝒐𝒅𝒆𝒔 𝑹 = #𝒐𝒇 𝒓𝒐𝒖𝒏𝒅𝒔 𝑮 × 𝑮 = 𝒈𝒓𝒊𝒅 𝒔𝒊𝒛𝒆

SEQDBL

is better

17

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Results: 2D Collision Avoidance

Depends

on the

example

𝑻𝑺, 𝑻𝑫 = 𝒎𝒐𝒅𝒆𝒍 𝒄𝒉𝒆𝒄𝒌𝒊𝒏𝒈 𝒕𝒊𝒎𝒆 𝒘𝒊𝒕𝒉 𝑺𝑬𝑸𝑺𝑬𝑴, 𝑺𝑬𝑸𝑫𝑩𝑳

𝝁, 𝝈 = 𝑨𝒗𝒈, 𝑺𝒕𝑫𝒆𝒗 𝒐𝒇
𝑻𝑺

𝑻𝑫

𝒏 = #𝒐𝒇 𝒏𝒐𝒅𝒆𝒔 𝑹 = #𝒐𝒇 𝒓𝒐𝒖𝒏𝒅𝒔 𝑮 × 𝑮 = 𝒈𝒓𝒊𝒅 𝒔𝒊𝒛𝒆

18

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Results: Mutual Exclusion

SEQSEM

and

SEQDBL

similar

𝑻𝑺, 𝑻𝑫 = 𝒎𝒐𝒅𝒆𝒍 𝒄𝒉𝒆𝒄𝒌𝒊𝒏𝒈 𝒕𝒊𝒎𝒆 𝒘𝒊𝒕𝒉 𝑺𝑬𝑸𝑺𝑬𝑴, 𝑺𝑬𝑸𝑫𝑩𝑳

𝝁, 𝝈 = 𝑨𝒗𝒈, 𝑺𝒕𝑫𝒆𝒗 𝒐𝒇
𝑻𝑺

𝑻𝑫

𝒏 = #𝒐𝒇 𝒏𝒐𝒅𝒆𝒔 𝑹 = #𝒐𝒇 𝒓𝒐𝒖𝒏𝒅𝒔 𝑮 × 𝑮 = 𝒈𝒓𝒊𝒅 𝒔𝒊𝒛𝒆

19

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Synchronizer Protocol: 2BSYNC

Shared Variables:𝑮𝑽 = 𝑮𝑽 𝟎 , 𝑮𝑽[𝟏] Node 𝟎 = 𝒇𝟎() Node 𝟏 = 𝒇𝟏()

𝑮𝑽𝟎 𝟎 = 𝒇𝟎 𝑮𝑽𝟎 𝑮𝑽𝟏 𝟏 = 𝒇𝟏(𝑮𝑽𝟏)

𝒃𝟎 ≔ 𝒃𝟎 + 𝟏
𝑮𝑽𝟎 𝟎 , 𝒃𝟎 !

𝑩𝒂𝒓𝒓𝟎

𝒃𝟏 ≔ 𝒃𝟏 + 𝟏

𝑮𝑽𝟏 𝟏 , 𝒃𝟏 !
𝑩𝒂𝒓𝒓𝟏

𝑼𝒔𝒆 𝒃𝒂𝒓𝒓𝒊𝒆𝒓
𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔: 𝒃𝟎, 𝒃𝟏
𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆𝒅 𝒕𝒐 𝟎

𝑩𝒂𝒓𝒓𝟎 ≡ 𝒘𝒉𝒊𝒍𝒆 𝒃𝟏 < 𝒃𝟎 𝒔𝒌𝒊𝒑;

𝒃𝟎 ≔ 𝒃𝟎 + 𝟏
𝒃𝟎!

𝑩𝒂𝒓𝒓𝟎

𝒃𝟏 ≔ 𝒃𝟏 + 𝟏

𝒃𝟏!
𝑩𝒂𝒓𝒓𝟏 Atomic Send. Either

both 𝑮𝑽𝟎[𝟎] and 𝒃𝟎 are

received, or none is

received. Can be

implemented on existing

network stack, e.g,

TPC/IP

𝑮𝑽𝟎, 𝒃𝟎 𝑮𝑽𝟏, 𝒃𝟏

𝑷𝒓𝒐𝒐𝒇 𝒐𝒇 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒏𝒆𝒔𝒔
𝒊𝒏 𝒑𝒂𝒑𝒆𝒓

20

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Tool Overview

Project webpage (http://mcda.googlecode.com)

• Tutorial (https://code.google.com/p/mcda/wiki/Tutorial)

Verification

• daslc --nodes 3 --seq --rounds 3 --seq-dbl --out tutorial-02.c tutorial-
02.dasl

• cbmc tutorial-02.c (takes about 10s to verify)

Code generation & simulation

• daslc --nodes 3 --madara --vrep --out tutorial-02.cpp tutorial-02.dasl

• g++ …

• mcda-vrep.sh 3 outdir ./tutorial-02 …

DEMO

21

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Future Work

Improving scalability and verifying with unbounded number of rounds

Verifying for unbounded number of nodes (parameterized verification)

• Paper at SPIN’2014 Symposium

Asynchronous and partially synchronous network semantics

Scalable model checking

• Abstraction, compositionality, symmetry reduction, partial order reduction

Fault-tolerance, uncertainty, …

• Combine V&V of safety-critical and mission-critical properties

22

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Contact Information Slide Format

Sagar Chaki

Principal Researcher

SSD/CSC

Telephone: +1 412-268-1436

Email: chaki@sei.cmu.edu

U.S. Mail

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Web

www.sei.cmu.edu

www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

23

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Synchronous Collision Avoidance Code

MOC_SYNC;

CONST X = 4; CONST Y = 4;

CONST NEXT = 0;

CONST REQUEST = 1;

CONST WAITING = 2;

CONST MOVE = 3;

EXTERN int

MOVE_TO (unsigned char x,

 unsigned char y);

NODE uav (id) { … }

void INIT () { … }

void SAFETY { … }

NODE uav (id)

{

 GLOBAL bool lock [X][Y][#N];

 LOCAL int state,x,y,xp,yp,xf,yf;

 void NEXT_XY () { … }

 void ROUND () {

 if(state == NEXT) { …

 state = REQUEST;

 } else if(state == REQUEST) { …

 state = WAITING;

 } else if(state == WAITING) { …

 state = MOVE;

 } else if(state == MOVE) { …

 state = NEXT;

 } } }

INIT

{

 FORALL_NODE(id)

 state.id = NEXT;

 //assign x.id and y.id non-deterministically

 //assume they are within the correct range

 //assign lock[x.id][y.id][id] appropriately

 //nodes don’t collide initially

 FORALL_DISTINCT_NODE_PAIR (id1,id2)

 ASSUME(x.id1 != x.id2 || y.id1 != y.id2);

}

SAFETY {

 FORALL_DISTINCT_NODE_PAIR (id1,id2)

 ASSERT(x.id1 != x.id2 || y.id1 != y.id2);

}

24

Model-Driven Verifying Compilation

Sagar Chaki, October 1, 2014

© 2014 Carnegie Mellon University

Synchronous Collision Avoidance Code

 if(state == NEXT) {

 //compute next point on route

 if(x == xf && y == yf) return;

 NEXT_XY();

 state = REQUEST;

 } else if(state == REQUEST) {

 //request the lock but only if it is free

 if(EXISTS_OTHER(idp,lock[xp][yp][idp] != 0)) return;

 lock[xp][yp][id] = 1;

 state = WAITING;

 } else if(state == WAITING) {

 //grab the lock if we are the highest

 //id node to request or hold the lock

 if(EXISTS_HIGHER(idp, lock[xp][yp][idp] != 0)) return;

 state = MOVE;

 }

 else if(state == MOVE) {

 //now we have the lock on (xp,yp)

 if(MOVE_TO()) return;

 lock[x][y][id] = 0;

 x = xp; y = yp;

 state = NEXT;

 }

